第 27 章

双対空間

横ベクトル $(1 \times n$ 型行列)を縦ベクトル $(n \times 1$ 型行列) にかけると、 1×1 のスカラー 値が得られる。

$$\left(a_1 \quad \cdots \quad a_n\right) \left(egin{array}{c} v_1 \ dots \ v_n \end{array}
ight) = a_1 v_1 + \cdots + a_n v_n$$

上の式は、数ベクトル空間の内積そのものである。

$$\langle \boldsymbol{a} | \boldsymbol{v} \rangle = \boldsymbol{a}^{\top} \boldsymbol{v} = a_1 v_1 + \dots + a_n v_n$$

さて、観測装置としての内積[第15章]で述べたように、

内積 $\langle \boldsymbol{a}|\boldsymbol{v}\rangle$ は、観測装置 $\langle \boldsymbol{a}|$ によるベクトル $|\boldsymbol{v}\rangle$ の測定結果

という捉え方もできる。

ここで、観測装置である横ベクトル $\langle a |$ を、縦ベクトル $| v \rangle$ から内積を返す関数 ϕ_a とみることにしよう。

$$\phi_{\boldsymbol{a}}(\boldsymbol{v}) = \langle \boldsymbol{a} | \boldsymbol{v} \rangle = a_1 v_1 + \cdots + a_n v_n$$

 $\phi_{m{a}}$ は、縦ベクトル $m{v}$ を入力とし、スカラー値 $\langle m{a} | m{v} \rangle$ を返す、 \mathbb{R}^n から \mathbb{R} への写像である。

さらに、内積の双線形性から、 ϕ_a は線形写像であることがわかる。

$$\phi_{\boldsymbol{a}}(c_1\boldsymbol{v}_1 + c_2\boldsymbol{v}_2) = (\boldsymbol{a}, c_1\boldsymbol{v}_1 + c_2\boldsymbol{v}_2)$$

$$= c_1(\boldsymbol{a}, \boldsymbol{v}_1) + c_2(\boldsymbol{a}, \boldsymbol{v}_2)$$

$$= c_1\phi_{\boldsymbol{a}}(\boldsymbol{v}_1) + c_2\phi_{\boldsymbol{a}}(\boldsymbol{v}_2)$$

この関数 ϕ_a は、線形汎関数と呼ばれる写像の一例である。

$rac{1}{2}$ \det - \mathbb{R}^n 上の線形汎関数

 \mathbb{R}^n 上の関数 $\phi: \mathbb{R}^n \to \mathbb{R}$ が線形写像であるとき、 ϕ を \mathbb{R}^n 上の<mark>線形汎関数</mark>あるいは<mark>線形形式</mark>という。

線形汎関数のベクトル表示

 \mathbb{R}^n 上の線形汎関数は、すべて内積から定めることができる。

$oldsymbol{\$}$ theorem - \mathbb{R}^n 上の線形汎関数の内積による表現

 \mathbb{R}^n 上の任意の線形汎関数 $\pmb{\psi} \colon \mathbb{R}^n \to \mathbb{R}$ に対し、ある $\pmb{a} \in \mathbb{R}^n$ がただ一つ存在して、次を満たす。

$$\psi = \phi_{\boldsymbol{a}} = \langle \boldsymbol{a} | \cdot \rangle$$

証明

 \mathbb{R}^n の標準基底を $\{e_1,\ldots,e_n\}$ とする。

このとき、任意のベクトル $\boldsymbol{v} \in \mathbb{R}^n$ は、次のように表される。

$$\mathbf{v} = v_1 \mathbf{e}_1 + \cdots + v_n \mathbf{e}_n$$

これに ψ を作用させると、線形汎関数 ψ は線形性をもつので、

$$\psi(\boldsymbol{v}) = \psi(v_1 \boldsymbol{e}_1 + \dots + v_n \boldsymbol{e}_n)$$

$$= v_1 \psi(\boldsymbol{e}_1) + \dots + v_n \psi(\boldsymbol{e}_n)$$

$$= \left(\psi(\boldsymbol{e}_1) \quad \dots \quad \psi(\boldsymbol{e}_n)\right) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

ここで、

$$a = \begin{pmatrix} \psi(e_1) & \cdots & \psi(e_n) \end{pmatrix}$$

とおけば、次が成り立つ。

$$\psi(\boldsymbol{v}) = \langle \boldsymbol{a} | \boldsymbol{v} \rangle = \phi_{\boldsymbol{a}}(\boldsymbol{v})$$

v は任意のベクトルなので、

$$\psi = \phi_{\boldsymbol{a}} = \langle \boldsymbol{a} | \cdot \rangle$$

となるような $\boldsymbol{a} \in \mathbb{R}^n$ の存在が示された。

さらに、次式を振り返ると、 ψ が決まれば a が一意に定まることがわかる。

$$oldsymbol{a} = \Big(\psi(oldsymbol{e}_1) \quad \cdots \quad \psi(oldsymbol{e}_n)\Big)$$

よって、 ψ に対して \boldsymbol{a} はただ一つ存在する。

上の定理の証明で現れた次の式は、2通りの読み方ができる。

$$a = (\psi(e_1) \quad \cdots \quad \psi(e_n))$$

 ψ が決まれば、 $\psi(e_1), \ldots, \psi(e_n)$ の値が決まるので、 \boldsymbol{a} がただ一つ定まる。

逆に、 $theorem\ 10.7$ 「基底上の値による線型写像の同一性判定」より、基底 $\{e_1,\ldots,e_n\}$ に対する ψ の値が決まれば ψ の形が決まるので、上の式のように a を定めれば、a に対応して ψ の形がただ一つに定まることになる。

まとめると、

- \bullet すべてのベクトル a は線形汎関数 ψ をひとつ定める
- ullet すべての線形汎関数 $oldsymbol{\psi}$ はベクトル $oldsymbol{a}$ をひとつ定める

 $m{a}$ から $m{\psi}$ への対応は一対一であり、 $m{\psi}$ から $m{a}$ への対応も一対一である。 すなわち、 \mathbb{R}^n のベクトルと \mathbb{R}^n 上の線形汎関数の間には、 $m{2}$ 全単射が存在する。

全単射な対応は、本来同じものに「異なる表現を与えている」と捉えることができる。

縦ベクトルと横ベクトルによる線形汎関数の表現

次の式も、先ほどの定理の証明で現れたものである。

$$\psi(oldsymbol{v}) = \left(\psi(oldsymbol{e}_1) & \cdots & \psi(oldsymbol{e}_n)
ight) egin{pmatrix} v_1 \ dots \ v_n \end{pmatrix}$$

この式もまた、2通りの読み方ができる。

a を横ベクトルとみるなら、

$$\psi(oldsymbol{v}) = \left(\psi(oldsymbol{e}_1) & \cdots & \psi(oldsymbol{e}_n)
ight) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = oldsymbol{a}oldsymbol{v}$$

この見方では、線形汎関数は横ベクトル **a** との「行列としての積」である。

線形汎関数を行列の積として定義すれば、「横」ベクトル **a** が線形汎関数の表現行列に相当 すると捉えられる。

一方、
を縦ベクトルとみるなら、

$$\psi(oldsymbol{v}) = \left(\psi(oldsymbol{e}_1) & \cdots & \psi(oldsymbol{e}_n)
ight) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = oldsymbol{a}^ op oldsymbol{v} = (oldsymbol{a}, oldsymbol{v})$$

この見方では、線形汎関数は縦ベクトル α との「内積」である。

線形汎関数を内積として定義すれば、「縦」ベクトル **α** が線形汎関数の表現行列に相当すると捉えられる。

このように、線形汎関数という同じものに対して、横ベクトルと縦ベクトルは「異なる表現を与えている」とも解釈できる。

横ベクトルと縦ベクトルが<mark>転置</mark>という関係で結ばれていることで、この 2 通りの見方が可能 になる。

線形汎関数の空間

内積の双線形性は、任意のベクトル 2 に対して、

$$(c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2, \mathbf{v}) = c_1(\mathbf{a}_1, \mathbf{v}) + c_2(\mathbf{a}_2, \mathbf{v})$$

が成り立つというものだった。

これは、 \mathbb{R}^n 上の線形汎関数が満たす関係式と読み替えることができる。

$$\phi_{c_1\boldsymbol{a}_1+c_2\boldsymbol{a}_2}(\boldsymbol{v})=c_1\phi_{\boldsymbol{a}_1}(\boldsymbol{v})+c_2\phi_{\boldsymbol{a}_2}(\boldsymbol{v})$$

この関係式は、 \mathbb{R}^n 上の線形汎関数の集合に、線形空間としての構造をもたらす。

 \mathbb{R}^n 上の線形汎関数の集合を $(\mathbb{R}^n)^*$ と書くことにしよう。

この集合 $(\mathbb{R}^n)^*$ に和とスカラー倍の演算を導入することで、 $(\mathbb{R}^n)^*$ を線形空間とみなすことができる。

線形汎関数の空間の基底

 \mathbb{R}^n の基底を $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\}$ とするとき、任意のベクトル $\boldsymbol{v}\in\mathbb{R}^n$ は、

$$oldsymbol{v} = v_1 oldsymbol{u}_1 + \cdots + v_n oldsymbol{u}_n = \begin{pmatrix} oldsymbol{u}_1 & \cdots & oldsymbol{u}_n \end{pmatrix} egin{pmatrix} v_1 \ dots \ v_n \end{pmatrix}$$

という線形結合で表すことができる。

ここで、 v_1,\ldots,v_n は、基底 $\{oldsymbol{u}_1,\ldots,oldsymbol{u}_n\}$ に関する $oldsymbol{v}$ の成分あるいは座標と呼ばれる。

このうち第 j 座標 v_i を取得する関数を ϕ_i と定めよう。

$$\phi_i(\boldsymbol{v}) = v_i$$

このような関数を座標関数と呼ぶことにする。

また、 ϕ_i は線形であるため、 \mathbb{R}^n 上の線形汎関数である。

任意の $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n$ が基底 $\{\boldsymbol{u}_1, \dots, \boldsymbol{u}_n\}$ に関して次のように表せるとする。

$$oldsymbol{v} = \sum_{i=1}^n v_i oldsymbol{u}_i, \quad oldsymbol{w} = \sum_{j=1}^n w_j oldsymbol{u}_j$$

このとき、 ϕ_i は次のように定義される。

$$\phi_i(\boldsymbol{v}) = v_i, \quad \phi_i(\boldsymbol{w}) = w_i$$

ベクトルの和を考えると、

$$oldsymbol{v} + oldsymbol{w} = \sum_{i=1}^n (v_i + w_i) oldsymbol{u}_i$$

より、第 j 座標は $v_i + w_i$ となるので、

$$\phi_j(\boldsymbol{v}+\boldsymbol{w}) = v_j + w_j = \phi_j(\boldsymbol{v}) + \phi_j(\boldsymbol{w})$$

ベクトルのスカラー倍を考えると、

$$lpha oldsymbol{v} = \sum_{i=1}^n (lpha v_i) oldsymbol{u}_i$$

より、第j座標は αv_j となるので、

$$\phi_i(\alpha \boldsymbol{v}) = \alpha v_i = \alpha \phi_i(\boldsymbol{v})$$

以上より、 $\phi_j: \mathbb{R}^n \to \mathbb{R}$ は線形写像であることが示された。

 ϕ_i を用いると、 \boldsymbol{v} を表す線形結合は次のように書ける。

$$\boldsymbol{v} = \phi_1(\boldsymbol{v})\boldsymbol{u}_1 + \cdots + \phi_n(\boldsymbol{v})\boldsymbol{u}_n$$

ここで、たとえば \boldsymbol{v} を \boldsymbol{u}_1 に置き換えた式を考える。

$$\boldsymbol{u}_1 = \phi_1(\boldsymbol{u}_1)\boldsymbol{u}_1 + \cdots + \phi_n(\boldsymbol{u}_1)\boldsymbol{u}_n$$

この等式が成り立つには、

• $\phi_1(u_1) = 1$

•
$$\phi_2(\mathbf{u}_1) = 0, \ldots, \phi_n(\mathbf{u}_1) = 0$$

でなければならない。

右辺の \mathbf{u}_1 だけが残り、他の項が消えることで、 $\mathbf{u}_1 = \mathbf{u}_1$ という等式が成り立つ。

同様に考えると、 \boldsymbol{v} を \boldsymbol{u}_i に置き換えた式

$$\boldsymbol{u}_i = \phi_1(\boldsymbol{u}_i)\boldsymbol{u}_1 + \cdots + \phi_n(\boldsymbol{u}_i)\boldsymbol{u}_n$$

が成り立つには、 \mathbf{u}_i だけが残り、他の項が消えなければならないので、

$$\phi_j(\boldsymbol{u}_i) = \delta_{ij} = egin{cases} 1 & (i=j) \ 0 & (i
eq j) \end{cases}$$

と定める必要がある。

この式により、 \mathbb{R}^n の基底 $\mathbf{u}_1, \ldots, \mathbf{u}_n$ を選べば、それらに対応する線形汎関数 ϕ_1, \ldots, ϕ_n が定まることがわかる。

そしてこのとき、 ϕ_1, \ldots, ϕ_n は $(\mathbb{R}^n)^*$ の基底となっている。

 $oldsymbol{\$}$ theorem 27.1 - \mathbb{R}^n における基底に対応する線形汎関数の構成

 $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\}$ を \mathbb{R}^n の基底とするとき、 $\phi_j\in(\mathbb{R}^n)^*$ を次のように定める。

$$\phi_i(\boldsymbol{u}_i) = \delta_{ii}$$

このような ϕ_1, \ldots, ϕ_n は $(\mathbb{R}^n)^*$ の基底をなす。

証明 証明

ϕ_1,\ldots,ϕ_n が線型独立であること

次のような ϕ_1, \ldots, ϕ_n の線形関係式を考える。

$$c_1\phi_1+\cdots+c_n\phi_n=0$$

このとき、任意のjに対して、

$$(c_1\phi_1 + \dots + c_n\phi_n)(\boldsymbol{u}_j) = c_1\phi_1(\boldsymbol{u}_j) + \dots + c_n\phi_n(\boldsymbol{u}_j)$$

$$= \sum_{i=1}^n c_i\phi_i(\boldsymbol{u}_j) = \sum_{i=1}^n c_i\delta_{ij}$$

$$= c_j = 0$$

が成り立たなければならない。

これは ϕ_1, \ldots, ϕ_n が線型独立であることを示している。

ϕ_1,\ldots,ϕ_n が $(\mathbb{R}^n)^*$ を張ること

 $\psi \in (\mathbb{R}^n)^*$ を任意にとると、 $oldsymbol{u}_j$ に対する値 $lpha_j = \psi(oldsymbol{u}_j)$ が定まる。

このとき、 α_i を係数とする ϕ_1, \ldots, ϕ_n の線形結合を作ると、

$$(lpha_1\phi_1+\cdots+lpha_n\phi_n)(oldsymbol{u}_j)=lpha_1\phi_1(oldsymbol{u}_j)+\cdots+lpha_n\phi_n(oldsymbol{u}_j) \ =\sum_{i=1}^nlpha_i\phi_i(oldsymbol{u}_j)=\sum_{i=1}^nlpha_i\delta_{ij}=lpha_j \ =oldsymbol{\psi}(oldsymbol{u}_j)$$

 ϕ_j , ψ はともに \mathbb{R}^n から \mathbb{R} への線形写像であり、 ϕ_j の線形結合もまた $(\mathbb{R}^n)^*$ の元なので \mathbb{R}^n から \mathbb{R} への線形写像である。

よって、 \mathbb{R}^n の基底 $\{ \boldsymbol{u}_1, \ldots, \boldsymbol{u}_n \}$ に対して同じ値をとることから、 theorem 10.7「基底上の値による線型写像の同一性判定」より、

$$\psi = \alpha_1 \phi_1 + \cdots + \alpha_n \phi_n$$

がいえる。

したがって、任意の $\psi \in (\mathbb{R}^n)^*$ は ϕ_1, \ldots, ϕ_n の線形結合として表すことができるため、

$$(\mathbb{R}^n)^* = \langle \phi_1, \ldots, \phi_n \rangle$$

が示された。

線形汎関数の空間の次元

 \mathbb{R}^n の基底 $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\}$ と、それに対応する $(\mathbb{R}^n)^*$ の基底 $\{\phi_1,\ldots,\phi_n\}$ は、どちらも n 個のベクトルの組になっている。

ここでいう「ベクトル」とは、「線形空間の元」という意味である。 $(\mathbb{R}^n)^*$ も線形空間であるので、その元である線形汎関数も「ベクトル」と呼んでいる。

基底をなすベクトルの個数は、その空間の次元として定義されるので、次のことがいえる。

 \mathbb{R}^n 上の線形汎関数の空間 $(\mathbb{R}^n)^*$ の次元は、 \mathbb{R}^n の次元と等しい。

$$\dim \mathbb{R}^n = \dim(\mathbb{R}^n)^* = n$$

また、theorem 12.2 「線形代数における鳩の巣原理の抽象版」より、次元が等しいことから、 \mathbb{R}^n と $(\mathbb{R}^n)^*$ は線形同型である。

すなわち、 \mathbb{R}^n の元(縦ベクトル)と $(\mathbb{R}^n)^*$ の元(\mathbb{R}^n 上の線形汎関数)の間には、 $\mathbf{2}$ 全単射が存在する。

基底を決めれば、縦ベクトルと線形汎関数を同一視する(同じものの「異なる表現」と捉える)ことができる。

横ベクトルと座標関数

 $n \times 1$ 型行列 (n 次の縦ベクトル) 全体の集合は \mathbb{R}^n と表された。

 $1 \times n$ 型行列 (n 次の横ベクトル) 全体の集合を $^{t}\mathbb{R}^{n}$ と表すことにする。

 $^t\mathbb{R}^n$ の元は $1\times n$ 型行列なので、 \mathbb{R}^n から \mathbb{R} への線形写像(すなわち \mathbb{R}^n 上の<mark>線形汎関数</mark>)を表現している行列だと考えることができる。

座標関数の表現行列

基本ベクトルを転置したもの ${}^t e_j \in {}^t \mathbb{R}^n$ を縦ベクトル $\mathbf{v} \in \mathbb{R}^n$ にかけると、 \mathbf{v} の j 番目 の成分が得られる。

たとえば、n=3, j=2 の場合、

$${}^toldsymbol{e}_2egin{pmatrix} v_1\v_2\v_3 \end{pmatrix} = egin{pmatrix} 0 & 1 & 0 \end{pmatrix} egin{pmatrix} v_1\v_2\v_3 \end{pmatrix} = v_2$$

といった具合に、2番目の成分 v_2 が得られる。

このように、ベクトル $oldsymbol{v} \in \mathbb{R}^n$ に対して、その $oldsymbol{j}$ 番目の成分を返す \mathbf{e} 標関数を $oldsymbol{x}_j$ と表記することにしよう。

このとき、 $x_i: \mathbb{R}^n \to \mathbb{R}$ は \mathbb{R}^n 上の線形汎関数である。

 ${}^t {m e}_j {m v}$ を行列の積として見ると、横基本ベクトル ${}^t {m e}_j \in {}^t \mathbb{R}^n$ は線形汎関数 ${m x}_j$ の表現行列だと捉えることができる。

[Todo 1: 「基底方向への正射影」という観点についても述べる?]

横ベクトルと線形汎関数の同一視

任意の縦ベクトルは、基本ベクトル(標準基底)の線形結合として一意的に表現できる。

$$|oldsymbol{v}
angle = egin{pmatrix} v_1 \ dots \ v_n \end{pmatrix} = v_1 oldsymbol{e}_1 + \cdots + v_n oldsymbol{e}_n$$

同様に、任意の横ベクトルは、横基本ベクトルの線形結合として一意的に表現できる。

$$\langle \boldsymbol{a}| = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} = a_1^t \boldsymbol{e}_1 + \cdots + a_n^t \boldsymbol{e}_n$$

ここで、内積から線形汎関数へ [第 27 章] で述べた、横ベクトル $\langle \pmb{a} |$ は観測装置という視点に戻って、縦ベクトルを入力したら \pmb{a} との内積を返す線形汎関数を $\pmb{\phi}$ とおくと、

$$egin{aligned} \phi(oldsymbol{v}) &= oldsymbol{a}^{ op} oldsymbol{v} &= \left(a_1 & \cdots & a_n
ight) egin{pmatrix} v_1 \ dots \ v_n \end{pmatrix} \ &= a_1 v_1 + \cdots + a_n v_n \ &= a_1^t oldsymbol{e}_1 egin{pmatrix} v_1 \ dots \ v_n \end{pmatrix} + \cdots + a_n^t oldsymbol{e}_n egin{pmatrix} v_1 \ dots \ v_n \end{pmatrix} \ &= a_1 x_1(oldsymbol{v}) + \cdots + a_n x_n(oldsymbol{v}) \end{aligned}$$

よって、任意の線形汎関数 $\phi \in (\mathbb{R}^n)^*$ は、座標関数 x_1, \ldots, x_n の線型結合として表すことができる。

$$\phi = a_1 x_1 + \dots + a_n x_n$$

また、 x_i の表現行列が ${}^t e_i$ であることを思い出すと、

$$\phi = a_1{}^t \boldsymbol{e}_1 + \dots + a_n{}^t \boldsymbol{e}_n = \langle \boldsymbol{a} |$$

というように、線形汎関数 ϕ は横ベクトル $\langle a |$ と同一視することができる。

 $\{^t e_1, \ldots, ^t e_n\}$ を基底としてどんな横ベクトルも表現できることは、 $\{x_1, \ldots, x_n\}$ を基底としてどんな線形汎関数も表現できることに対応する。

これより、横ベクトルの空間 ${}^t\mathbb{R}^n$ と、線形汎関数の空間 $(\mathbb{R}^n)^*$ は、同じ空間とみなすことができる。

縦ベクトルと横ベクトルの双対性

 $\{ \boldsymbol{u}_1, \ldots, \boldsymbol{u}_n \}$ を \mathbb{R}^n の基底とするとき、任意の縦ベクトル $\boldsymbol{v} \in \mathbb{R}^n$ は、

$$\boldsymbol{v} = v_1 \boldsymbol{u}_1 + \cdots + v_n \boldsymbol{u}_n$$

という線形結合で表すことができる。

ここで、 v_1,\ldots,v_n は基底 $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\}$ に関する \boldsymbol{v} の座標である。

このうち、j 番目の座標 v_j を取得する関数を $\phi_j \colon \mathbb{R}^n \to \mathbb{R}$ と定めると、 ϕ_j は、

$$\phi_j(\boldsymbol{u}_i) = \delta_{ij}$$

を満たし、 $\{\phi_1,\ldots,\phi_n\}$ が $(\mathbb{R}^n)^*$ の基底となる。

このとき、 $(\mathbb{R}^n)^*$ の元(線形汎関数)を横ベクトルと同一視すると、任意の横ベクトル $\phi \in {}^t\mathbb{R}^n$ は、

$$\phi = c_1 \phi_1 + \dots + c_n \phi_n$$

という線形結合で表すことができる。

ここで、 c_1,\ldots,c_n は基底 $\{\phi_1,\ldots,\phi_n\}$ に関する ϕ の座標である。

このうち、j 番目の座標 c_j を取得する関数を ψ_j : ${}^t\mathbb{R}^n \to \mathbb{R}$ と定めると、 ψ_j は、

$$\psi_i(\phi_i) = \delta_{ij}$$

を満たし、 $\{\psi_1,\ldots,\psi_n\}$ が $({}^t\mathbb{R}^n)^*$ の基底となる。

さて、基底を変えれば座標も変わってしまうので、 ψ_j はあくまでも基底が $\{\phi_1,\ldots,\phi_n\}$ のときの横ベクトルの座標を返す関数である。

さらに、 ϕ_i は \mathbb{R}^n の基底が $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\}$ のときの縦ベクトルの座標を返す関数である。

つまり、 ψ_j は \mathbb{R}^n の基底 $\{ \boldsymbol{u}_1, \ldots, \boldsymbol{u}_n \}$ に依存しているので、 $\boldsymbol{u}_j \in \mathbb{R}^n$ を入力として ψ_j を定める関数 ι を考えてみる。

ιを用いると、次のように書ける。

$$\iota(\boldsymbol{u}_j) = \psi_j$$

このとき、基底に対して座標は一意的であり、基底が変わると座標が変わることから、

- i. 基底 $\{m{u}_j\}_{j=1}^n$ を固定すれば、 $\iota(m{u}_j)=\psi_j$ を満たす座標 $\{\psi_j\}_{j=1}^n$ は一意に定まる
- ii. 座標 $\{\psi_j\}_{j=1}^n$ を固定すれば、 $\iota(oldsymbol{u}_j)=\psi_j$ を満たす基底 $\{oldsymbol{u}_j\}_{j=1}^n$ は一意に定まる

という2通りの見方ができる。

このように、 $\mathbf{u}_j \in \mathbb{R}^n$ と $\psi_j \in (^t\mathbb{R}^n)^*$ には、「互いに測り、測られる」という対称性がある。このような対称性を双対性という。

この性質を意識し、 $^t\mathbb{R}^n$ を \mathbb{R}^n の双対空間という。

$$\mathbb{R}^n \xrightarrow{\overline{\square} - \overline{\mathbb{R}}} ({}^t\mathbb{R}^n)^*$$

$$\downarrow \\ \overline{\mathbb{R}^n}$$

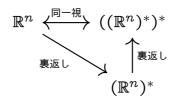
双対とは、「裏返しにした関係」と解釈できる。

 ${}^t\mathbb{R}^n$ が \mathbb{R}^n の双対空間であるとは、「横ベクトルの空間 ${}^t\mathbb{R}^n$ を裏返しにしたもの $({}^t\mathbb{R}^n)^*$ は、縦ベクトルの空間 \mathbb{R}^n と同一視できる」ということである。

逆に、 \mathbb{R}^n は $^t\mathbb{R}^n$ の双対空間である。「縦ベクトルの空間 \mathbb{R}^n を裏返しにしたもの $(\mathbb{R}^n)^*$ は、横ベクトルの空間 $^t\mathbb{R}^n$ と同一視できる」ということでもある。

すなわち、線形汎関数の空間 $(\mathbb{R}^n)^*$ を横ベクトルの空間 $^t\mathbb{R}^n$ と同一視できる。

そこで、 $^t\mathbb{R}^n$ を $(\mathbb{R}^n)^*$ に書き換えると、



という関係が見えてくる。 $(\mathbb{R}^n)^*$ を \mathbb{R}^n の双対空間という。

表 \mathbb{R}^n の裏は $(\mathbb{R}^n)^*$ であり、裏の裏 $((\mathbb{R}^n)^*)^*$ は表 \mathbb{R}^n になる。

双対空間と双対基底

ここまでの話を、一般の線形空間 V に拡張しよう。

まず、V 上の線形汎関数を次のように定義する。

★ def 27.1 - 線形汎関数

V を \mathbb{R} 上の線形空間とする。V から \mathbb{R} への線形写像 $\phi:V \to \mathbb{R}^n$ を V 上の線形汎関数あるいは線形形式という。

V から ℝ への線形写像、すなわち V 上の線形汎関数全体の集合を考える。

≥ def - 双対空間

V 上の線形汎関数全体の集合を V の双対空間といい、 V^* と表す。

$$V^* := \operatorname{Hom}(V, \mathbb{R}) = \{ \phi \colon V \to \mathbb{R} \mid \phi$$
 は線形写像 $\}$

線形空間 V が有限次元の場合は、選んでおいた V の基底に対して、 χ の基底 (dual basis) という双対空間 V^* の基底を考えることができる。

♣ theorem 27.2 - 双対基底の構成

V を n 次元の線形空間とし、 $\{ oldsymbol{v}_1, \ldots, oldsymbol{v}_n \}$ を V の基底とする。このとき、 $\phi_i \in V^*$ を次のように定める。

$$\phi_i(\boldsymbol{v}_i) = \delta_{ii}$$

このような ϕ_1, \ldots, ϕ_n は V^* の基底をなす。

この定理は、 $V=\mathbb{R}^n$ の場合である theorem 27.1 「 \mathbb{R}^n における基底に対応する線形 汎関数の構成」と同様に示すことができる。

また、この定理から次が成り立つ。

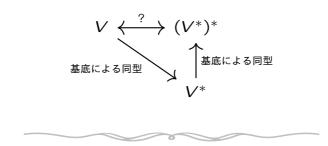
北 theorem 27.3 - 双対空間の次元

n 次元線形空間 V の双対空間 V^* の次元は、V の次元と等しい。

$$\dim V = \dim V^* = n$$

これより、V と V^* は線形同型であることがいえるが、この同型は基底に依存していることに注意しよう。

一旦ここまでの話をまとめると、次のような関係が成り立っている。

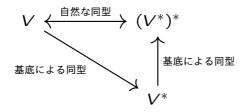


再双対空間による自然同型

線形空間 V の双対空間 V^* もまた線形空間になるので、さらにその双対空間 $(V^*)^*$ を考えることができる。

 $(V^*)^*$ を V の再双対空間あるいは第 2 双対空間といい、 V^{**} と書くこともできる。

実は $(V^*)^*$ と V は線形同型であり、この同型は V の基底に依存しないことが示される。



再双対空間への写像

線形汎関数 $\phi \in V^*$ に $\boldsymbol{v} \in V$ を入力して得られるスカラー値を次のように書くことにする。

$$\langle \phi, \boldsymbol{v} \rangle := \phi(\boldsymbol{v})$$

 $m{v} \in V$ を固定したとき、任意の線形汎関数(V^* の元)に $m{v}$ を入力したもの $\langle -, m{v} \rangle$ を考えることができる。

- はプレースホルダーであり、(線形汎関数なら) なんでも入れられることを意味する。 具体的な線形汎関数が決まっていないときは、 $-(\boldsymbol{v})$ と書くよりも、 $\langle -, \boldsymbol{v} \rangle$ と書いた 方がわかりやすい。 ここで、具体的な $\phi \in V^*$ を与えれば、スカラー値 $\langle \phi, \boldsymbol{v} \rangle$ が確定する。

$$\begin{array}{cccc} \Phi_{\boldsymbol{v}} \colon & V^* & \longrightarrow & \mathbb{R} \\ & \boldsymbol{\Psi} & & \boldsymbol{\Psi} \\ & \boldsymbol{\phi} & \longmapsto & \langle \boldsymbol{\phi}, \boldsymbol{v} \rangle \end{array}$$

この写像 $\phi \mapsto \langle \phi, \boldsymbol{v} \rangle$ を $\Phi_{\boldsymbol{v}}$ と書くことにしよう。

$$\Phi_{\boldsymbol{v}}(\phi) = \langle \phi, \boldsymbol{v} \rangle = \phi(\boldsymbol{v})$$

このように定めた $\Phi_{v}: V^* \to \mathbb{R}$ は線形写像であるので、 $(V^*)^*$ 上の線形汎関数である。

 $\phi_1, \phi_2 \in V^*, c_1, c_2 \in \mathbb{R} \ \text{\mathbb{R}} \ \text{\mathbb{R}}$

 ϕ_1, ϕ_2 は線形写像であるので、 \mathbf{def} 25.1「線形写像の和とスカラー倍」より、

$$\Phi_{\mathbf{v}}(c_1\phi_1 + c_2\phi_2) = (c_1\phi_1 + c_2\phi_2)(\mathbf{v})
= c_1\phi_1(\mathbf{v}) + c_2\phi_2(\mathbf{v})
= c_1\Phi_{\mathbf{v}}(\phi_1) + c_2\Phi_{\mathbf{v}}(\phi_2)$$

となるので、 Φ_{v} は線形写像である。

余談だが、上の式変形は次のように書くこともできる。

$$\Phi_{\boldsymbol{v}}(c_1\phi_1 + c_2\phi_2) = \langle c_1\phi_1 + c_2\phi_2, \boldsymbol{v} \rangle$$

$$= c_1\langle \phi_1, \boldsymbol{v} \rangle + c_2\langle \phi_2, \boldsymbol{v} \rangle$$

$$= c_1\Phi_{\boldsymbol{v}}(\phi_1) + c_2\Phi_{\boldsymbol{v}}(\phi_2)$$

この見方に慣れておくと、後の議論に対して戸惑いが少なくなる。

また、 $\Phi_{\pmb{v}}$ は \pmb{v} に依存しているので、各 $\pmb{v} \in V$ に $\Phi_{\pmb{v}} \in (V^*)^*$ を対応させる写像 ι を考えることができる。

$$\begin{array}{cccc}
\iota \colon & V & \longrightarrow & (V^*)^* \\
& \Psi & & \Psi \\
& \boldsymbol{v} & \longmapsto & \Phi_{\boldsymbol{v}}
\end{array}$$

このように定めた $\iota: V \to (V^*)^*$ は線形写像である。

補足: ℓ の線形性

$$\iota(c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2) = \Phi_{c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2}$$

$$= \langle -, c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 \rangle$$

$$= c_1 \langle -, \boldsymbol{v}_1 \rangle + c_2 \langle -, \boldsymbol{v}_2 \rangle$$

$$= c_1 \Phi_{\boldsymbol{v}_1} + c_2 \Phi_{\boldsymbol{v}_2}$$

$$= c_1 \iota(\boldsymbol{v}_1) + c_2 \iota(\boldsymbol{v}_2)$$

となるので、しは線形写像である。

 $\iota:V \to (V^*)^*$ は線形写像であるので、 ι が線形同型写像であることを示せば、V と $(V^*)^*$ の同型が導かれる。

そのためには、**def** 12.1「線形同型写像」より、ιの全単射性を証明できればよい。

双対空間の分離性

特にιが単射であることを示すために、次の定理を用いる。

♣ theorem 27.4 - 双対空間の分離性

有限次元線形空間 V において、任意の $\boldsymbol{v} \in V$ で $\boldsymbol{v} \neq \boldsymbol{o}$ ならば、 $\phi(\boldsymbol{v}) \neq 0$ と なるような線形汎関数 $\phi \in V^*$ が存在する。

証明 証明

立である。

theorem 1.3「単一ベクトルの線型独立性と零ベクトル」より、 $\pmb{v} \neq \pmb{o}$ は線型独

よって、theorem 10.6「基底の延長」により、 \boldsymbol{v} を含む V の基底 $\{\boldsymbol{v},\boldsymbol{v}_2,\ldots,\boldsymbol{v}_n\}$ を選ぶことができる。

この基底に対応する双対基底 $\phi_1, \phi_2, \ldots, \phi_n \subset V^*$ を考えると、それぞれの ϕ_i は、次の性質をもつ。

$$\phi_i(\boldsymbol{v}_j) = \delta_{ij} \quad (i, j = 1, 2, \ldots, n)$$

このとき $\phi_1(\boldsymbol{v})=1$ であるので、 $\phi=\phi_1$ をとれば、任意の $\boldsymbol{v}\neq\boldsymbol{o}$ に対して $\phi(\boldsymbol{v})=1$ となる。

再双対空間との同型

♣ theorem - 再双対空間との自然な同型

V が有限次元ならば、 $\iota: V \to (V^*)^*$ は線形同型である。

証明

写像 しは単射

 $\iota(\boldsymbol{v}) = 0$ すなわち、任意の $\phi \in V^*$ に対して

$$\iota(\boldsymbol{v})(\phi) = \phi(\boldsymbol{v}) = 0$$

であると仮定する。

この仮定は、すべての線形汎関数が **v** を 0 に写すことを意味する。

ここで、 $\boldsymbol{v} \neq \boldsymbol{o}$ とすると、theorem 27.4「双対空間の分離性」より、 $\boldsymbol{\phi}(\boldsymbol{v}) \neq 0$ となるような線形汎関数 $\boldsymbol{\phi}$ が存在する。

これは $\iota(\boldsymbol{v})=0$ という仮定と矛盾するので、 $\iota(\boldsymbol{v})=0$ のもとでは、 $\boldsymbol{v}=\boldsymbol{o}$ でなければならない。

したがって、

$$\iota(\boldsymbol{v}) = 0 \Longrightarrow \boldsymbol{v} = \boldsymbol{o}$$

theorem 5.1「零ベクトルへの写像による単射性の判定」より、これは線 形写像 *t* が単射であることを示している。 ■

theorem 27.3「双対空間の次元」を考えると、

$$\dim(V^*)^* = \dim V^* = \dim V$$

 ι が単射であることから $\operatorname{Ker}(\iota) = \{o\}$ なので、 $\operatorname{theorem} \ 11.2$ 「線形写像の次元定理」より、 $\dim(V^*)^* = \dim V$ は $\iota \colon V \to (V^*)^*$ が全射であることを示している。

双対ペアリング

V と $(V^*)^*$ の間には、線形同型写像 $\iota: V \to (V^*)^*$ が存在する。

このことから、 \det 12.2「部分空間の線形同型」より、V と $(V^*)^*$ は線形同型であることがいえる。

このように、V が有限次元の場合は、V と $(V^*)^*$ を自然に(基底によらずに)同一視することができる。

ここで、再双対空間への写像[第27章]を考える際に登場した次の式を再解釈してみよう。

$$\Phi_{\boldsymbol{v}}(\phi) = \phi(\boldsymbol{v})$$

V と $(V^*)^*$ の同型により、 $\mathbf{v} \in V$ と $\Phi_{\mathbf{v}} \in (V^*)^*$ も同一視することができる。 そこで、 $\Phi_{\mathbf{v}}$ を単に \mathbf{v} と書くことにすると、次の関係が得られる。

$$\boldsymbol{v}(\phi) = \phi(\boldsymbol{v})$$

これは、 $\boldsymbol{v} \in V$ と $\phi \in V^*$ に対し、

値 $\phi(\boldsymbol{v})$ をとることは、 \boldsymbol{v} から見ても $\boldsymbol{\sigma}$ から見ても対等

であることを表している。

この平等さを表すために、次のような記法を使うこともある。

$$\langle \phi, \boldsymbol{v} \rangle = \langle \boldsymbol{v}, \phi \rangle = \phi(\boldsymbol{v})$$

この記号 〈・,・〉を、双対を表すペアリングと呼ぶ。

双対写像

線形空間の間の線形写像が与えられると、双対空間の間の線形写像を定めることができる。

数ベクトル空間の場合

 $A \in m \times n$ 型行列とする。

A を左からかけることによって定義される線形写像を f_A とする。

一方、横ベクトルに A を右からかけることによって定義される線形写像を f_{Δ}^{*} とする。

ここで、横ベクトルの空間を線形汎関数の空間と同一視して、次のように書こう。

$$f_{A}^{*} : (\mathbb{R}^{m})^{*} \longrightarrow (\mathbb{R}^{n})^{*}$$

$$\Psi \qquad \qquad \Psi$$

$$\phi \longmapsto \phi A$$

● 補足:ベクトルと行列の積の次元

n 次元縦ベクトル $\boldsymbol{v} \in \mathbb{R}^n$ に対して A を左からかけたものは、m 次元縦ベクトル となる。

$$\begin{array}{c|c}
A & \mathbf{v} \\
m \times n & m \times 1
\end{array} = A\mathbf{v} \\
m \times 1$$

m 次元横ベクトル $\phi \in {}^t\mathbb{R}^m$ に対して A を右からかけたものは、n 次元横ベクトル となる。

$$\phi \cdot A = \phi A \\
1 \times m \times n \times n \\
\uparrow \neg U \uparrow$$

 $\phi \in (\mathbb{R}^m)^*$ は \mathbb{R}^m 上の線形汎関数であるから、次のような関係になる。

$$\mathbb{R}^n \xrightarrow{f_A} \mathbb{R}^m \downarrow \phi$$

$$\mathbb{R}$$

このとき、合成写像 $\phi \circ f_A$ を考えることができ、その表現行列は $\phi A \in (\mathbb{R}^n)^*$ となる。

$$\mathbb{R}^n \xrightarrow{f_A} \mathbb{R}^m$$

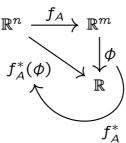
$$\phi \circ f_A \xrightarrow{\mathbb{R}} \mathbb{R}$$

 f_A^* の定義より、 ϕA は $f_A^*(\phi)$ と書くことができるから、

$$\mathbb{R}^n \xrightarrow{f_A} \mathbb{R}^m$$

$$f_A^*(\phi) \xrightarrow{\mathbb{R}} \mathbb{R}$$

ここで、 f_A^* は、 \mathbb{R}^m 上の線形汎関数 ϕ を入力として、 \mathbb{R}^n 上の線形汎関数 $f_A^*(\phi)$ を返す線形写像である。



📤 補足: f_A^* の線形性

 $\phi_1, \phi_2 \in (\mathbb{R}^m)^*$ と $c_1, c_2 \in \mathbb{R}$ に対して、

$$f_A^*(c_1\phi_1 + c_2\phi_2) = (c_1\phi_1 + c_2\phi_2)A$$

$$= c_1(\phi_1A) + c_2(\phi_2A)$$

$$= c_1f_A^*(\phi_1) + c_2f_A^*(\phi_2)$$

となるので、 f_A^* は線形写像である。

このように、 $(\mathbb{R}^m)^*$ から $(\mathbb{R}^n)^*$ への線形写像 f_A^* を、

$$f_A^*(\phi) = \phi \circ f_A$$

として定めることができる。 f_A^* を f_A の χ 対写像という。

 $f_A^*(\phi)\colon \mathbb{R}^n \to \mathbb{R}$ に $\boldsymbol{v} \in \mathbb{R}^n$ を入力すると、次の関係が導かれる。

$$f_{\Delta}^*(\phi)(\boldsymbol{v}) = (\phi \circ f_{\Delta})(\boldsymbol{v}) = \phi(f_{\Delta}(\boldsymbol{v}))$$

つまり、 $oldsymbol{v}$ に $f_A^*(oldsymbol{\phi})$ を作用させることと、 $oldsymbol{\phi}$ に $f_A(oldsymbol{v})$ を作用させることは同じである。

この関係は、ペアリングの記号を用いて書くと対称性がわかりやすい。

北 theorem - 数ベクトル空間における双対写像とペアリング $\phi \in (\mathbb{R}^m)^*, \boldsymbol{v} \in \mathbb{R}^n$ に対して、次の関係が成り立つ。

$$\langle f_A^*(\phi), \boldsymbol{v} \rangle = \langle \phi, f_A(\boldsymbol{v}) \rangle$$

一般の線形空間の場合

一般の線型空間 V, W に対しても、同様に双対写像を定義することができる。

線形空間 V, W の間の線形写像 $f: V \rightarrow W$ が与えられたとする。

W 上の線形汎関数を $\varphi \in W^*$ とすると、次のような関係になっている。

$$V \xrightarrow{f} W \downarrow_{\varphi}$$

このとき、合成写像 $\varphi \circ f$ を考えることができる。

$$V \xrightarrow{f} W \qquad \qquad \downarrow \varphi \qquad \qquad \downarrow \varphi$$

$$\varphi \circ f \qquad \qquad \downarrow \varphi$$

$$\mathbb{R}$$

theorem 2.2「線形写像の合成」より、線形写像の合成もまた線形写像になるので、 $oldsymbol{arphi}$ は $oldsymbol{V}$ 上の線形汎関数である。

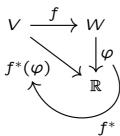
これを $f^*(\varphi) \in V^*$ と書くことにする。

$$V \xrightarrow{f} W$$

$$f^*(\varphi) \searrow \varphi$$

$$\downarrow \varphi$$

ここで、 f^* は、 W^* 上の線形汎関数 φ を入力として、 V^* 上の線形汎関数 $f^*(\varphi)$ を返す線形写像である。



★ 補足: f* の線形性

 φ_1, φ_2 は線形写像であるので、def 25.1「線形写像の和とスカラー倍」より、

$$f^*(c_1\varphi_1 + c_2\varphi_2)(\boldsymbol{v}) = (c_1\varphi_1 + c_2\varphi_2)f(\boldsymbol{v})$$

$$= c_1\varphi_1(f(\boldsymbol{v})) + c_2\varphi_2(f(\boldsymbol{v}))$$

$$= c_1f^*(\varphi_1)(\boldsymbol{v}) + c_2f^*(\varphi_2)(\boldsymbol{v})$$

となるので、 f^* は線形写像である。

ここで、 $f^*(\varphi) = \varphi \circ f$ と定義したことから、

$$f^*(\varphi)(\boldsymbol{v}) = (\varphi \circ f)(\boldsymbol{v}) = \varphi(f(\boldsymbol{v}))$$

と書けることを用いている。

このように、 W^* から V^* への線形写像 f^* を、

$$f^*(\varphi) = \varphi \circ f$$

として定めることができる。 f^* を f の双対写像という。

≥ def - 双対写像

V,W を線形空間とし、 $f:V\to W$ を線形写像とするとき、f の双対写像 $f^*:W^*\to V^*$ を次のように定義する。

$$f^*(\varphi) := \varphi \circ f \quad (\varphi \in W^*)$$

 $f^*(\varphi): V \to \mathbb{R}$ に $\mathbf{v} \in V$ を入力すると、次の関係が導かれる。

$$f^*(\varphi)(\boldsymbol{v}) = (\varphi \circ f)(\boldsymbol{v}) = \varphi(f(\boldsymbol{v}))$$

つまり、 \boldsymbol{v} に $f^*(\varphi)$ を作用させることと、 φ に $f(\boldsymbol{v})$ を作用させることは同じである。

♣ theorem - 双対写像とペアリング

 $\varphi \in W^*, \boldsymbol{v} \in V$ に対して、次の関係が成り立つ。

$$\langle f^*(\varphi), \boldsymbol{v} \rangle = \langle \varphi, f(\boldsymbol{v}) \rangle$$

双対写像の表現行列

双対写像の表現行列は、元の線形写像の表現行列の転置になる。 このことから、双対写像は<mark>転置写像</mark>とも呼ばれる。

♣ theorem - 双対写像の行列表現

V,W を有限次元の線形空間とし、 $f\colon V\to W$ を線型写像とする。また、 $\dim V=n,\dim W=m$ とする。

V の基底 $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ 、W の基底 $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_m$ を選び、これらの双対基底をそれぞれ $\phi_1, \ldots, \phi_n, \psi_1, \ldots, \psi_m$ とする。

このとき、 $\{m{v}_i\}$ 、 $\{m{w}_j\}$ に関する f の表現行列を A とすると、 $\{m{\psi}_j\}$, $\{m{\phi}_i\}$ に関する f^* の表現行列は tA によって与えられる。

証明

f の双対写像 f^* は次のように定義される。

$$f^*(\varphi)(\boldsymbol{v}) = \varphi(f(\boldsymbol{v}))$$

表現行列の構成 [第 13 章] より、 $f:V\to W$ の表現行列 A は次のように表される。

$$f(\boldsymbol{v}_i) = \sum_{j=1}^m a_{ji} \boldsymbol{w}_j \quad (1 \leq i \leq n)$$

したがって、任意のiに対し、

$$\psi_k(f(oldsymbol{v}_i)) = \psi_k\left(\sum_{j=1}^m a_{ji}oldsymbol{w}_j
ight) = \sum_{j=1}^m a_{ji}\psi_k(oldsymbol{w}_j)$$

ここで、 $\{\psi_k\}$ は $\{\boldsymbol{w}_j\}$ の双対基底なので、 $\psi_k(\boldsymbol{w}_j) = \delta_{kj}$ より、

$$\psi_k(f(\boldsymbol{v}_i)) = a_{ki}$$

また、 $f^*(\psi_k) \in V^*$ は V 上の線形汎関数なので、V の双対基底 $\{\phi_i\}$ の線形結合として表せる。

$$f^*(\psi_k) = \sum_{i=1}^n b_{ik} \phi_i \quad (1 \leq k \leq m)$$

この係数 b_{ik} を並べた行列を B とすると、B は f^* の表現行列である。

このとき、

$$f^*(\psi_k)(\boldsymbol{v}_i) = \psi_k(f(\boldsymbol{v}_i)) = a_{ki}$$

であり、一方、

$$f^*(\psi_k)(oldsymbol{v}_i) = \sum_{j=1}^n b_{ji}\phi_j(oldsymbol{v}_i) = \sum_{j=1}^n b_{ji}\delta_{ij} = b_{ki}$$

でもあるから、 $b_{ki} = a_{ki}$ が成り立つ。すなわち、

$$B = {}^{t}A$$

である。

Zebra Notes

Туре	Number
todo	1